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The radial distribution functions, 4nv2gi,(r), of molten alkali halides, obtained by Monte Carlo 
simulations, have been deconvoluted into contributions from the first, second, third, etc. 
neighbours. These individual distribution functions indicate that in alkali halide melts the first 
coordination sphere of the ions contains an integral or half integral number of unlike charged 
ions. The shapes of the individual distribution functions show characteristic changes from first 
coordination shell neighbours to second shell ones and this can be utilised to make the selection 
of the boundary of the coordination sphere less arbitrary. Such a deconvolution reveals more of 
the structure in the case of the like charged ion distributions as well. 

1 INTRODUCTION 

Coordination number is an important characteristic quantity of the structure 
of condensed phases, since it can usually be associated with one or a few 
possible geometrical arrangements of the particles surrounding the one taken 
as central. The major part of the interactions between the particle and its 
environment can then be estimated. 

In the original concept a coordinated particle is an adjacent neighbour to 
the central one. The definition of the latter, however, is only unequivocal if 
the same kind of neighbours are at the same definite distance from the central 
one, i.e. in the cases of rather highly symmetric crystals of the elements or 
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simple compounds. Then even the extension of the concept to next nearest 
neighbours, etc., leading to second, third, etc., coordination spheres, is still 
definite. The criteria of the definitions soon become arbitrary if either the 
order decreases or the chemical composition becomes more complicated. It is 
not our aim to discuss the latter case in which the existence of a chemical 
bond between neighbours is more important than their actual geometry. 
Instead we intend to compare purely geometrical definitions of coordination 
number with the physical significance usually expected of the concept. The 
comparisons are made on the Monte Carlo simulated configurations of 20 
different alkali halide melts.’ 

2 RESULTS AND DISCUSSION 

The most common methods of determining coordination number are based 
on the partial pair correlation functions. In an ideal and fluctuationless 
crystal the pair correlation functions would consist of a series of Dirac delta 
functions which can be considered to be Gaussian curves (or some similar 
function) degenerated from those constituting the pair correlation functions 
of real crystals at non-zero temperature. In simple cases at finite temperatures 
some of the first peaks are still well separated, thus the coordination number 
can be calculated by integrating the partial radial distribution function 
Gij(r) = 4nr2gij(r) (where giJ(r) is the usual partial pair correlation function) 
from r = 0 to the first minimum for the first coordination sphere, or from one 
minimum to the next for subsequent coordination spheres. If the minima are 
deep enough the overlap between coordination spheres is small and the 
coordination number obtained is rather accurate. 

In highly disordered systems, however, the overlaps are considerable. 
Integration from minimum to minimum would still yield accurate values 
provided that the overlaps of the individual coordination spheres give rise to 
mutual compensations. Since this is incidental one can never be sure whether 
the coordination number so calculated indeed expresses what it is meant to, 
i.e. the number of adjacent neighbours. In addition the positions of the 
minima in the pair correlation functions are not usually well defined which 
brings about a statistical uncertainty. 

This type of calculation has the advantage, in comparison to other 
methods discussed below, that it can be applied to experimental gi j ( r )  
functions, while others are based on the complete set of spatial coordinates 
including angular correlations. There are, however, a number of variations on 
the method which within themselves produce different answers. They have 
been reviewed in relation to coordination in molten salts by Biggin and 
Enderby.’ Integration of Gij(r)  can be performed either to the first minimum 
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in g i j ( r )  or in Gij(r) .  Because of the poor definition of these minima another 
approach is to assume that the first coordination shell contribution to rgi j (r)  
or r2gi j (r)  is symmetric about its peak, and hence to double the integral of 
Gij(r)  to the peak in either of these functions. 

The discrete geometrical concept of the Voronoi polyhedra provides 
another definition of coordination n ~ m b e r . ~ . ~  A Voronoi polyhedron is the 
minimum volume polyhedron around a given particle whose faces are 
comprised of the perpendicular bisecting planes of the vectors pointing from 
the central particle to the others. Thus a strict geometrical definition of an 
adjacent neighbour might be based on the criterion that there is a face 
corresponding to it on the Voronoi polyhedron. There’are, however, always 
some faces with very small surface area which correspond to particles 
obviously not in the given coordination sphere (e.g. the second neighbours in 
a simple cubic lattice do have corresponding faces on the Voronoi poly- 
hedra). The coordination number thus derived is always, therefore, greater 
than that calculated by integration to a minimum. 

In order to select only the relevant neighbours either some arbitrary 
criterion is set up on, say, the minimum surface area of a face, or an additional 
ad hoc geometrical criterion is added, e.g. a neighbour is considered “direct” 
when the vector pointing to the given particle from the central one pierces the 
corresponding face (otherwise the particle is mainly hidden behind a first 
neighbour). 

An additional complication is introduced when the Voronoi polyhedrci of 
unlike particles are to be determined. Although Fisher and Koch5 have 
suggested an easily computable procedure to divide the space with respect to 
particle size yet preserving the properties of the Voronoi polyhedra of their 
filling the total space completely, there is some arbitrariness in choosing exact 
particle radii. It should also be considered that in a liquid there will be a 
significant number of particles that may be considered to be either “vacan- 
cies’’ or “interstitials”. A method of identifying such “defects” is necessary 
before an appropriate definition of the relevant Voronoi polyhedra can be 
made. 

In Figure 1 we show the partial pair distribution functions g + - ( r )  from 
Monte Carlo simulations of molten LiT and RbC1,’ together with the first 
coordination sphere contributions from direct and indirect Voronoi poly- 
hedra as defined above. The coordination numbers found by these methods 
and those found by integration of G + - ( r )  are summarised in Table 1. 

The method we suggest in this paper diminishes the arbitrariness of the 
determination of coordination numbers. It is based on a deconvolution of the 
radial distribution functions Gij(r), obtained from simulated configurations, 
into components corresponding to the radial distribution functions of first, 
second, third, etc. nearest neighbours. The results for LiI and RbCl are shown 
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FIGURE 1 Simulated pair correlation function of unlike charged ions in molten Lil and RbCl 
(full curve) together with that of Voronoi polyhedra selected adjacent neighbours (long dashes) 
and direct neighbours (short dashes). For definitions see text. 

TABLE I 

Unlike neighbour coordination numbers 
derived by various methods. 

Coordination 
number 

Method LiI RbCl 

1. Integration. 
(a) g(r )  minimum 4.2 5.7 
(b) r2g( r )  minimum 3.9 5.4 
(c) r2g( r )  symmetric 2.2 3.6 
(d) rg ( r )  symmetric 2.2 3.6 

(a) Normal 7.3 8.2 
(b) Direct 5.2 6.7 

3. Deconvolution. 4 5.5 

2. Voronoi. 
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FIGURE 2 Deconvolution of the partial radial pair distribution functions (4nr2g,j(r))  into 
components corresponding to the first, second, third, etc., nearest neighbours in molten LiI 
simulated by the Monte Carlo method. 

in Figures 2 and 3. These are typical of those for all other molten alkali 
halides. It is clearly seen that the fourth and fifth unlike charged neighbours 
in the case of LiI are distributed in a characteristically different way, while for 
RbCl the distribution of the sixth unlike neighbour is intermediate between 
the characteristically different curves of the fifth and seventh neighbours. On 
the grounds of a qualitative impression one would conclude that the 
coordination number in LiI is 4, whereas that in RbCl is 5.5 in the sense 
that the sixth neighbour is shared equally between the first and second 
coordination spheres. 

These distributions may be parameterised by their peak position, height, 
width at half-height, etc. Any of these parameters has been found to be useful 
for the determination of whether a given radial distribution curve is the last 
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FIGURE 3 The same as Figure 2 for molten RbCI. 

one of an inner coordination sphere, or an intermediate one, or the first one of 
an outer sphere. However the borderline between two coordination spheres is 
best determined by the distance where the ratio of the half-widths measured 
to either limit of the curves from the peak position is equal to unity. At the 
same time the average width at half-height is a maximum while the peak 
height is a minimum. This width ratio is shown in Figure 4 for molten LiI and 
RbCl. 

In the case of like charged ions, where the differences between individual 
distribution functions are found to be smaller, statistical errors and the small 
size of the sample make such parameters more uniform and, thus, less useful. 
It can be found, however, that in LiI the like ion coordination is z 10, while in 
RbCl it is r 14 with a distinction between the first 8 and the remaining 6 ions. 
This distinction is visible as a shoulder in g+ + ( r )  and g- - ( r ) .  

In Table I we compare the coordination numbers determined by this 
method with those obtained by the other methods described above. It can be 
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FIGURE 4 The ratio of the left-hand-side half width to the right-hand-side half width of the 
individual radial distribution curves (shown in Figures 2 and 3)as a function of their serial 
number. 

concluded that the Voronoi procedures, as expected, overestimate the 
coordination, although they do provide direct geometrical information. Of 
the various integration procedures those assuming symmetry of either 
r g +  - ( I )  or r 2 g +  - ( r )  about the peak underestimate the coordination because 
only the distribution of the first and second ions is anywhere near symmetric. 
The others are notably asymmetric. Integration to the first minimum in either 
g +  - ( r )  or G +  - ( I )  produces very similar coordination numbers (the difference 
depending on the depth of the minimum). From the individual ion distribu- 
tions it can be seen that there is a considerable degree of mutual compensa- 
tion of the contributions of first and second coordination sphere ions and 
that this is approximately symmetric about the minimum in G ,  - ( r ) .  Integra- 
tion to the first minimum in G ,  - ( r )  produces, therefore, the closest estimate 
of the coordination to that found bv deconvolution. It is generallv an 
underestimate. The coordination number for experimental data may, there- 
fore, be considered to be the closest integral or half-integral value above this 
estimate. The coordination numbers for the complete set of alkali halides are 
given in Table 11. 
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TABLE I1 

Unlike neighbour coordination numbers 
found by deconvolution of G ,  - ( r )  for 
Monte Carlo simulations of molten alkali 
halides, (i), as compared to results of inte- 
gration, always rounded up to the nearest 
integral or half-integral value, to the first 
minimum in G, -(r), (ii). Experimental 
values obtained by the latter method are 

given in brackets. 

F c1 Br I 

Li (i) 4 
(ii) 4 

Na (i) 4.5 
(ii) 4.5 

K (i) 5.5 
(ii) 5 

Rb (i) 5.5 
(ii) 6 

Cs (i) 5.5 
(ii) 5.5 

4 
4 
4.5 

5.5 
5.5 
5.5 

5.5 

5 ( 5 s  

5.5 (7)6 

5.5 (5.5)’ 

4 4  
3.5 4 
4.5 4.5 
5 4.5 
5.5 5 
5.5 5 
5.5 5.5 
5.5 5.5 
5.5 5.5 
6 5.5 

The information on coordination derived by this deconvolution method 
suggests that there is a distinct geometrical aspect to the short range order in 
ionic melts. In RbCl the “sixth” ion appears to be an interstitial (presumably 
highly mobile). There may be a set of corresponding “vacancies”. Such 
aspects of liquid structure deserve further consideration, particularly in 
relation to theories of melting. 
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